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Review Article

Abstract

Terrestrial crustaceans are represented by approximately 4,900 species from six main 
lineages. The diversity of terrestrial taxa ranges from a few genera in Cladocera and Os-
tracoda to about a third of the known species in Isopoda. Crustaceans are among the 
smallest as well as the largest terrestrial arthropods. Tiny microcrustaceans (Branchiop-
oda, Ostracoda, Copepoda) are always associated with water films, while adult stages of 
macrocrustaceans (Isopoda, Amphipoda, Decapoda) spend most of their lives in terres-
trial habitats, being independent of liquid water. Various adaptations in morphology, phys-
iology, reproduction, and behavior allow them to thrive in virtually all geographic areas, 
including extremely arid habitats. The most derived terrestrial crustaceans have acquired 
highly developed visual and olfactory systems. The density of soil copepods is some-
times comparable to that of mites and springtails, while the total biomass of decapods 
on tropical islands can exceed that of mammals in tropical rainforests. During migrations, 
land crabs create record-breaking aggregations and biomass flows for terrestrial inverte-
brates. The ecological role of terrestrial microcrustaceans remains poorly studied, while 
omnivorous macrocrustaceans are important litter transformers and soil bioturbators, oc-
casionally occupying the position of the top predators. Notably, crustaceans are the only 
group among terrestrial saprotrophic animals widely used by humans as food. Despite the 
great diversity and ecological impact, terrestrial crustaceans, except for woodlice, are of-
ten neglected by terrestrial ecologists. This review aims to narrow this gap discussing the 
diversity, abundance, adaptations to terrestrial lifestyle, trophic relationships and ecolog-
ical functions, as well as the main methods used for sampling terrestrial crustaceans.

Key words: Crustacea, ecosystem engineers, food webs, morphological adaptations, 
soil animals, terrestrialization, trophic ecology

Introduction

The subphylum Crustacea represents one of the largest and morphologically 
diverse taxa within the phylum Arthropoda (clade Mandibulata) with more than 
70,000 known species, inhabiting all major ecosystems on Earth, except the 
airspace (Schram 1986). Some recent molecular studies show that the sub-
phylum Crustacea is paraphyletic and includes all animals in the Pancrustacea 
clade, except for Hexapoda (Rota-Stabelli et al. 2010). However, some crusta-
ceans of the Vericrustacea group (e.g., Anostraca, Copepoda, Malacostraca, 
and others) are closely related to insects (Insecta) than to other crustaceans 
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from the Oligostraca clade (e.g., Ostracoda) (Koenemann et al. 2010; Regier et 
al. 2010). By other analysis, the clade Pancrustacea includes Hexapoda, being 
the most diverse group of animals on Earth (Bernot et al. 2022).

The main lineages of Crustacea appeared in the Cambrian time, being pre-
sumably marine aquatic animals (Chen et al. 2001; Schwentner et al. 2017). 
Since then, various lineages of crustaceans have tried to conquer the land, and 
many have succeeded. The first terrestrial crustaceans may have colonized the 
soil through marine basins during the Carboniferous period, ~ 360–300 Mya 
(Golonka and Ford 2000), and then filled ecological niches in moist and shad-
ed soils in forests on coastal flood plains (Williams et al. 2006; Bennett 2008; 
Broly et al. 2013a). Their land colonization process occurred later than in the in-
sects’ ancestors, which probably left the sea in the Lower Devonian, ~ 405 Mya 
(Grimaldi 2010; Watson-Zink 2021). The recent phylogenetic conclusions on 
Talitroidea have shown that their ancestors appeared no later than the Jurassic 
period, with the radiation of the ancestor taxa well established by the beginning 
of the Cretaceous period, ~ 140–138 Mya, being semi-terrestrial amphipods 
living close to the sea in swamps and mangrove forests (Myers and Lowry 
2020). The first attested occurrences of Oniscidea (woodlice), the only modern 
group of Crustacea almost entirely composed of terrestrial forms, are record-
ed from the Early Cretaceous (100.5–66 Mya), while the paleobiogeographic 
context of fossil specimens and current biological considerations support a 
pre-Pangaea origin of the Oniscidea, in the Late Paleozoic, 350–250 Mya, most 
likely during the Carboniferous period (Carefoot and Taylor 1995; Tabacaru 
and Danielopol 1996; Broly et al. 2013a). Decapod crustaceans colonized the 
terrestrial habitats significantly later. For example, true crabs (Brachyura) in-
dependently colonized terrestrial habitats several times and separated from 
related marine/estuarine or freshwater relatives during the Late Cretaceous 
Period (100.5–66 Mya) (Watson-Zink 2021; Wolfe et al. 2022). Land-dwelling 
lifestyle has become the main factor of their further diversification, and numer-
ous semi-terrestrial and terrestrial lineages radiated in the Early Eocene, which 
possibly coincided with global warming during the Paleocene-Eocene Thermal 
Maximum (~ 55 Mya) (Tsang et al. 2022). Colonization of terrestrial habitats 
has probably occurred relatively recently in Ostracoda and Branchiopoda, with 
marine eurytopic species colonized terrestrial niches from brackish and fresh 
waters in coastal floodplains (Williams et al. 2006; Bennett 2008).

Present-day terrestrial crustaceans thrive in very diverse habitats and may even 
be the predominant life form in some land ecosystems (Hansson et al. 2011). 
They were among the first invertebrates discovered and described by scientists. 
The land crab Cancer ruricola (= Gecarcinus ruricola) and woodlouse Oniscus 
asellus were described by Linnaeus (1758) in “Systema Naturae”. European 
sand- and landhoppers, for example, Talitrus grillus (= Speziorchestia grillus), 
were also described at the dawn of the diversity studies (Bosc 1802; Latreille 
1802; Montagu 1808). The first terrestrial ostracod Mesocypris pubescens and 
harpacticoids from genera Epactophanes and Parastenocaris were discovered in 
the early 20th century from mosses and epiphytes of the cloud forests of Africa 
(Daday 1910) and Indonesia (Menzel 1916, 1921, 1923, 1926), respectively, 
while Chappuis (1928a, 1982b, 1930) described several tiny harpacticoids from 
mosses of the Himalayas’ foothills. The first truly terrestrial brachiopodans 
(= cladocerans), Bryospilus repens and Bryospilus bifidus (Chydoridae), were 
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discovered in 1980 in epiphytic mosses and the litter of cloud and rain forests of 
Puerto Rico, Venezuela, and New Zealand (Frey 1980). Nevertheless, crustaceans, 
except for woodlice, are not usually regarded as a group characteristic of 
terrestrial habitats. Despite their abundance and obvious importance in many 
habitats of tropical and ex-tropical terrestrial ecosystems, their ecological role 
and impact remain underestimated and undeservedly overlooked by “terrestrial” 
soil zoologists and ecologists (Fiers and Ghenne 2000).

In the review, we provide an overview of published data on the diversity, abun-
dance, and ecological role of crustaceans living in terrestrial environments, ex-
cluding subterranean habitats, phytothelmata and other small water reservoirs, 
peat bogs, and other habitats providing a constant aquatic environment. We 
consider terrestrial those crustaceans whose adult stages spend most of their 
lives in terrestrial habitats more or less isolated from water sources. We aimed 
to show that crustaceans are among the functionally important components of 
terrestrial biodiversity, although their impact on ecosystem processes often re-
mains underestimated. This review includes three main parts: 1) diversity and 
abundance in terrestrial habitats; 2) most important morphological, physiolog-
ical, and behavioral adaptations; 3) trophic connections and functional role in 
ecosystems. In addition, we provide a brief description of the main methods 
that could be useful for sampling terrestrial crustaceans.

Diversity and abundance in terrestrial habitats

Habitats and distribution

Even well-drained terrestrial habitats contain a large amount of water, mainly 
in the form of surface water films and capillary soil moisture (Ghilarov 1956; 
Robinson et al. 2008). Water-filled pores and microfilms are also abundant in 
moist organic epigean substrates such as leaf litter or moss cushions. The 
total volume of this “cryptic water” is almost equal to the combined volume of 
freshwater lakes and rivers (Hutchinson 1957; Bittelli 2011).

Dependence on cryptic water underlies a traditional division of terrestrial 
crustaceans into two ecological (not phylogenetic) groups: microcrustaceans 
and macrocrustaceans (Table 1) (Hurley 1968; Little 1983).

Table 1. Comparative ecological characteristics of micro- and macrocrustaceans.

Microcrustacea Macrocrustacea

Taxa Branchiopoda, Ostracoda, Copepoda Malacostraca (Amphipoda, Isopoda, Decapoda)

Size Total body length < 1 mm; body mass < 1 mg Total body length from 2–3 mm to 120 mm; body 
mass up to 4 kg

Diversity ~ 220 known terrestrial or semi-terrestrial 
species

~ 4500 known terrestrial or semi-terrestrial 
species

Water Depend on water films during the whole life cycle Isopoda and Amphipoda mostly independent, 
Decapoda need liquid water for breeding

Habitats Moist organic substrates, such as humid leaf 
litter and moss cushions, wet soils of shorelines 
and marshes. Branchiopoda and Ostracoda are 

confined mainly to warm regions

Almost everywhere, including high altitudes, arid 
deserts, Arctic, and sub-Antarctic tundra; soil, 

litter, arboreal habitats. Most of Amphipoda and 
Decapoda are confined to warm regions
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Microcrustaceans

Microcrustaceans, represented by Branchiopoda (Cladocera), Ostracoda, and 
Copepoda, are tiny arthropods with a total body length typically < 1 mm, which 
are dependent on and associated with surface water films or pore water. These 
microhabitats are often discrete and restricted in volume and therefore are 
strongly influenced by wetting, drying, precipitation, drainage, and evaporation. 
Branchiopods and ostracods are known for permanently wet habitats in tropi-
cal and subtropical cloud and rain forests, where they live in thin films and small 
accumulations of water on the vegetation and forest floor. The most important 
condition for the survival of these animals is seemingly regular precipitation 
(Harding 1953, 1955; Schornikov 1969; Frey 1980; Martens et al. 2004; Pinto et 
al. 2005a). Terrestrial Copepoda (Harpacticoida and Cyclopoida) have a wider 
distribution range. Harpacticoids have been found in habitats containing only 
a small amount of capillary water, while the ability to encyst allows them to 
survive persistent droughts, as well as to spread over long distances with the 
help of wind or with clumps of moss carried by other animals (Deevey 1941; 
Glime 2017a). In addition to moist tropical and temperate zones, where they are 
quite diverse (Dahms and Qian 2004; Martens et al. 2008), they are known for 
boreal and polar meadow/tundra soils and coastal environments, extending to 
Arctic and sub-Antarctic (Reid 1986; Flössner 1992; Hansson et al. 1996; Pugh 
et al. 2002; Marin and Palatov 2023). They have been found also in mountain 
habitats, for example, harpacticoid Elaphoidella pseudocornuta is known from 
the leaf litter of the wet forests of Nepal at an altitude of 1900–3900 m a.s.l. 
(Dumont and Maas 1988). Microcrustaceans are probably very widespread in 
terrestrial biotopes where there is at least a small amount of pore water and 
extremely low or high temperatures are not reached. Due to their small size, 
they rarely attract the attention of soil zoologists. Occasionally, the presence of 
microcrustaceans in soil and other terrestrial habitats is considered an artifact 
(Fiers 2013) and the actual distribution of microcrustaceans in terrestrial envi-
ronments is probably underestimated (Fiers and Ghenne 2000).

Macrocrustaceans

Macrocrustaceans, represented by malacostracan orders Amphipoda, Isopoda, 
and Decapoda, are relatively large arthropods, usually (2–300 mm in the total 
body length), which are significantly less dependent on water films, pore water, 
and even soil moisture (Hurley 1968; Little 1983). These crustaceans densely 
populate coastal marine zone (Bliss and Mantel 1968; Friend and Richardson 
1986; Myers and Lowry 2020), tropical and subtropical marine islands (Green 
1997; Lindquist et al. 2009), and temperate inland forests, where they occur 
from the soil of the forest floor to the top tier of the canopy (Richardson 1992; 
Taylor et al. 1993; Biju Kumar et al. 2017; Ng and Ng 2018; Wongkamhaeng et 
al. 2018). In favorable terrestrial environments, crustaceans have undergone 
profound morphological and ecological speciation, and occupy various ecolog-
ical niches (Schmalfuss 1984, 2003; Vilisics et al. 2007; Schmidt 2008; Hsu et 
al. 2018). Specific morphological adaptations and behavioral reactions of mac-
rocrustaceans (see below) allowed them to colonize a great variety of arid land 
habitats (Edney 1968; Lindqvist 1968; Hornung 2011). Many species thrive in 
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extreme abiotic conditions, such as high-altitude and cold Arctic or sub-Antarc-
tic regions, dry and acidic habitats (Richardson and Jackson 1995; Serejo 2004, 
2009; Greenslade et al. 2008; Lowry and Coleman 2012). The highest altitude 
dwelling crab, Potamonautes loveni from Kenya and Uganda lives in terrestrial 
habitats up to 3060 m a.s.l. (Cumberlidge and Clark 2010), while crabs Geothel-
phusa haituan are known from cloud forests growing at approximately 2000 m 
a.s.l. in mountains of Taiwan (Chen et al. 2007). Woodlice have been reported 
from altitudes higher than 4000 m a.s.l., reaching high abundance and density 
there (Sfenthourakis et al. 2008). The woodlouse Protracheoniscus nivalis Ver-
hoeff, 1936 inhabits cloud forests at altitudes reaching 4725 m a.s.l. in Ladakh 
and an unidentified species was found in mountains of the northwest Himala-
yas, where oxygen can drop to 60% of the sea-level pressure (Beron 1997, 2008; 
Hegna and Lazo-Wasem 2010).

Nevertheless, the diversity of ecological niches and biotopes occupied by 
macrocrustaceans is largely determined by physical environmental factors, 
such as moisture and temperature. For example, the distribution of woodlice 
towards the north is limited by the duration of the warm period, and the high-
est diversity of woodlice on the territory of the former USSR was observed be-
tween isoclines of 180 and 210 days with temperature > 10 °C (Kuznetsova 
and Gongalsky 2012), while the upper limits of temperature tolerance estimat-
ed for landhoppers varied between 29.5 °C and 39.5 °C (Gaston and Spicer 
1998; Ulian and Mendes 1988; Cowling et al. 2003, 2004). While most terres-
trial crustaceans prefer warm conditions, some isopods and amphipods are 
cold-resistant (Tanaka and Udagawa 1993; Moore et al. 1995; Greenslade et al. 
2008). For example, Arctic talitroids of the genus Orchestia can survive at tem-
peratures below 0 °C, and even -8 °C (Moore and Francis 1986a, 1986b). The 
critical relative humidity for most talitroids, below which they show desiccation 
stress, is close to 95–100%, which makes them dependent on moist leaf litter 
and soil microhabitats (Lazo-Wasem 1984; Cowling et al. 2003). Synanthropic 
landhopper Talitroides topitotum is considered one of the most tolerant to low 
humidity but can survive only for 50 h at a relative humidity of 87% (Ulian and 
Mendes 1988). In contrast, land crab Holthuisana (Austrothelphusa) transversa 
can survive in arid clay soils of the Australian desert (Greenaway and MacMil-
len 1978; MacMillen and Greenaway 1978; Waltham 2016), while woodlouse 
Hemilepistus reaumurii inhabits dry loess soils in the Sahara Desert and Negev 
Desert (Shachak et al. 1976; Dubinsky et al. 1979).

In addition to the forest floor, macrocrustaceans are found in various abo-
veground habitats, but for many groups such records are still casual. Although 
most woodlice live in soils and litter layers, some members of the Philosciidae, 
Armadillidae and Trachelipodidae are arboreal (Paoletti et al. 1991; Paoletti and 
Hassall 1999). In temperate forests woodlice Philoscia affinis, Philoscia mus-
corum, and Porcellio scaber are frequently found in the forest canopy, on tree 
bark, leaves, and branches, not only when the forest floor is inundated or water-
logged (Favretto et al. 1988; Warburg 1993). Arboricolous woodlouse Atracheo-
dillo marmorivagus lives on Carapa grandiflora in Congo and Rwanda (Schmidt 
1999), while South African Alloniscus marinus also lives and feeds on green 
leaves of the bietou bush Chrysanthemoides (Osteospermum) monilifera (Gla-
zier and Kleynhans 2015). Pseudolaureola atlantica, endemic woodlouse to St 
Helena Island, requires the closed canopy and high humidity conditions of black 
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cabbage tree woodland (Melanodendron integrifolium), living an arboreal life-
style on the fern understorey (Dutton 2017a, b). Arboreal forms are known for 
talitroids; for example, Hawaiorchestia gagnei and Platorchestia pickeringi were 
found in leaf axils of Freycinetia arborea well above ground (Richardson 1992). 
Allorchestoides rosea lives among leaves and fibers of the estuarine Nypa palm 
(Nypa fruticans) in Thailand (Wongkamhaeng et al. 2018). A truly high diver-
sity of tree-dwelling forms is reached in crabs (Decapoda: Brachyura). Some 
true crabs, such as Gecarcinucidae (long-legged tree crabs), Potamonautidae, 
Parathelphusidae, Pseudothelphusidae, and Sesarmidae (so-called “vampire 
crabs”) climb into the crowns of trees but must descend into water reservoirs 
for reproduction (Schubart et al. 2003, 2009; Cumberlidge et al. 2005; Ng et 
al. 2015a, 2015b; Wehrtmann et al. 2016; Ng 2017). Some long-legged Asian 
crabs, e.g., Calcipotamon, Tiwaripotamon, and Neotiwaripotamon, inhabit karstic 
mountains and massifs where they hide in the water-filled crevices of limestone 
outcrops, going out at night for feeding in the forest floor (Shih and Do 2014; Do 
et al. 2016; Huang et al. 2020). Malaysian crabs Arachnothelphusa merarapensis 
and Arachnothelphusa terrapes (Ng 1991; Grinang et al. 2015; Ng and Ng 2018) 
and Kani maranjandu, inhabiting holes inside large Terminalia paniculata trees 
in the Western Ghats (Biju Kumar et al. 2017), are fully arboreal, and can even 
breed in the small water-filled reservoirs in tree hollows (Ng 1995; Ng and Liu 
2003). Jamaican Metopaulias depressus, one of the most advanced arboreal 
crabs, is showing features of eusocial behavior, and protect their plants and 
larvae (Diesel 1989; Diesel and Schuh 1993; Diesel and Schubart 2000, 2007).

Many terrestrial macrocrustaceans are invaders or synanthropes that success-
fully colonize transformed ecosystems, urban areas, and other anthropogenic 
habitats such as parks and gardens (Perger et al. 2013; Perger 2014). Woodlice 
are among the most numerous groups of epigeic arthropods in the transformed 
habitats (Philpott et al. 2014; Hornung et al. 2015), where the likelihood of suc-
cessful settlement of invasive species is increased due to suppressed activity 
of native predators or competitors (Sorensen and Burkett 1977; Szlavecz et al. 
2018). From 20% to 90% of species living in transformed habitats of city parks in 
Japan are represented by terrestrial isopods, mostly invasive species (Lee and 
Kwon 2015; Giurginca et al. 2017). The most famous invasive landhopper spe-
cies, Talitroides topitotum, formerly endemic to the Indo-Pacific region, is now 
distributed worldwide through the marketing of exotic plants (Álvarez et al. 2000; 
Eutrópio and Krohling 2013; Arias-Pineda and Tristancho 2017). Better resistance 
to drying and the ability to detect and occupy wet shelters in drier habitats allow 
Talitroides topitotum to displace native talitroid species (Friend and Lam 1985; 
Richardson 1992). Among the invasive talitroids are also Platorchestia platensis 
(Serejo and Lowry 2008; Simpson 2011; Hupało and Grabowski 2018), Crypt-
orchestia cavimana (Konopacka et al. 2009), Brevitalitrus hortulanus, Talitroides 
alluaudi (Lincoln 1979; Jazdzewski et al. 2004), and Arcitalitrus spp. (Richardson 
1980). On the other hand, local communities of native terrestrial crustaceans, 
especially on isolated oceanic islands, are often affected by various invasive ter-
restrial invertebrates, such as the predatory nemertean Geonemertes pelaensis 
(Shinobe et al. 2017), the land snail Lissachatina fulica (Lake and O’Dowd 1991), 
and the yellow crazy ant, Anoplolepis gracilipes (O’Dowd et al. 2003).
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Diversity

The proportion of terrestrial or semi-terrestrial species among different orders 
of Crustacea varies greatly, and in some lineages might be underestimated. 
The diversity of terrestrial Branchiopoda (Sousa et al. 2017) and Ostracoda 
(Pinto et al. 2004, 2005a, 2005b, 2008; Karanovic et al. 2012) is low, represent-
ed by only a few species or genera. Approximately 100 terrestrial or semi-ter-
restrial species have been described in Copepoda, mainly Harpacticoida (Reid 
1986, 2001) (Table 2). Overall, terrestrial forms represent < 0.1% of the total 
diversity of these mainly aquatic taxa. Among macrocrustaceans, ~ 1.7% of 
the total diversity of order Decapoda (Little 1983; Greenaway 2003), ~ 3% of 
the order Amphipoda (Hurley 1968; Friend and Richardson 1986; Myers and 
Lowry 2020), and up to 33% of the order Isopoda (Taiti 2004; Poore and Bruce 
2012; Sfenthourakis and Taiti 2015) are presently known as terrestrial species 
(Table  3). Among the total diversity of terrestrial crustaceans (~ 4,900 spe-
cies), Branchiopoda and Ostracoda account for 0.1% and 0.6% of all species, 
respectively. Copepoda, Amphipoda, and Decapoda account for approximately 
3.7%, 6.1%, and 7.8%, respectively, while the main diversity (81.6%) belongs to 
woodlice (Isopoda) (Fig. 1).

Branchiopoda (order Anomopoda) appear to be the least diverse and adapt-
ed forms among terrestrial crustaceans and retain a mostly ancestral aquatic 
lifestyle. Currently, only five species from three genera are reported as semi-ter-
restrial (Table 2), living in wet mosses growing in primary cloud/rain forests of 
New Zealand, Cameroon, Puerto Rico, and Venezuela, and wet soils of Cerrado 
biotopes in Brazil (Frey 1980; Cammaerts and Mertens 1999; Chiambeng and 
Dumont 1999; Sousa et al. 2017).

The list of terrestrial Ostracoda presently consists of > 30 species from 
12 genera, known from leaf litter and wet mosses of tropical and subtrop-
ical forests, the spray zone of waterfalls (Martens et al. 2004; Pinto et al. 
2004, 2005a, 2005b, 2008; Karanovic et al. 2012), and some coastal habi-
tats, such as coastal wood and algae deposits in Kuril Islands (Schornikov 
1969). These genera represent several unrelated lineages adapted to the 
terrestrial lifestyle, but their phylogeny and zoogeography are still poorly 
understood.

The known diversity of terrestrial and semi-terrestrial Copepoda includes 18 
harpacticoid and 10 cyclopoid genera found in soil, leaf litter, and other moist 
habitats in tropical and temperate zones worldwide (Reid 1986, 1993, 2001; 
Dumont and Mass 1988; Corgosinho et al. 2017). Records of these animals in 
terrestrial habitats are rare and irregular, although thorough studies of soil biota 
often revealed a greater diversity than could be expected (Fiers and Ghenne 
2000; Fiers and Jocque 2013).

The diversity of terrestrial Amphipoda, or sand- and landhoppers (Tali-
troidea) includes ~ 300 described species from seven families with at least 
125 genera (Table 3) inhabiting various terrestrial, intertidal, and supralitto-
ral habitats from sandy beaches to leaf litter of lowland and highland for-
ests worldwide (Serejo and Lowry 2008; Lowry and Myers 2019; Myers and 
Lowry 2020).
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Table 2. Taxa with terrestrial or semi-terrestrial forms among microcrustaceans (Branchiopoda, Ostracoda, Copepoda).

Families Genera

Branchiopoda (Cladocera), order Anomopoda (3 genera)

Chydoridae Bryospilus, Nicsmirnovius, Monospilus

Ostracoda, order Podocopida (12 genera)

Cyprididae Austromesocypris, Bryocypris, Callistocypris, Mesocypris, Scottia

Candonidae Caaporacandona, Terrestricandona, Terrestricypris

Limnocytheridae Intrepidocythere

Terrestricytheridae Terrestricythere

Darwinulidae Penthesilenula, Vestalenula

Copepoda, order Harpacticoida (18 genera) 

Parastenocarididae Remaneicaris, Forficatocaris, Murunducaris

Canthocamptidae Canthocamptus, Bryocamptus, Epactophanes, Fibulacamptus, Maraenobiotus, Moraria, 
Gulcamptus, Remaneicaris, Pindamoraria, Eirinicaris, Elaphoidella, Attheyella (Chappuisiella), 
Antarctobiotus

Phyllognathopodidae Phyllognathopus, Parbatocamptus

Copepoda, order Cyclopoida (10 genera)

Cyclopidae Bryocyclops, Virbiocyclops, Paracyclops, Goniocyclops, Graeteriella, Ectocyclops, Menzeliella, 
Metacyclops, Muscocyclops, Olmeccyclops

Figure 1. Proportions (%) of all known species of terrestrial Crustacea among different lineages (orders).
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Table 3. Taxa with terrestrial or semi-terrestrial forms among macrocrustaceans (Malacostraca).

Superfamilies or families Families or genera

Order Amphipoda (125+ genera)

Superfamily Talitroidea Arcitalitroidae (15 genera), Protorchestiidae (6 genera), Uhlorchestiidae (1 genus), 
Brevitalitroidae (8 genera), Curiotalitroidae (1 genus), Makawidae (22 genera), Talitroidae 
(72 genera)

 Order Isopoda (554+ genera)

Suborder Oniscidea Agnaridae (14 genera), Alloniscidae (1 genus), Armadillidae (81 genera), Armadillidiidae 
(16 genera), Balloniscidae (2 genera), Bathytropidae (7 genera), Berytoniscidae (1 genus), 
Bisilvestriidae (1 genus), Cylisticidae (4 genera), Delatorreiidae (3 genera), Detonidae (3 
genera), Dubioniscidae (3 genera), Eubelidae (50 genera), Halophilosciidae (3 genera), 
Hekelidae (1 genus), Irmaosidae (1 genus), Ligiidae (6 genera), Mesoniscidae (1 genus), 
Olibrinidae (5 genera), Oniscidae (6 genera), Oniscidea incertae sedis (30 genera), 
Paraplatyarthridae (1 genus), Philosciidae (115 genera), Platyarthridae (8 genera), 
Porcellionidae (19 genera), Pudeoniscidae (4 genera), Rhyscotidae (2 genera) Schoebliidae 
(1 genus), Scleropactidae (28 genera), Scyphacidae (6 genera), Spelaeoniscidae (9 
genera), Stenoniscidae (3 genera), Styloniscidae (17 genera), Tendosphaeridae (3 
genera), Titanid ae (5 genera), Trachelipodidae (8 genera), Trichoniscidae (87 genera), 
Turanoniscidae (1 genus), Tylidae (2 genera)

Suborder Phreatoicidea Phreatoicidae (1-2 terrestrial genera)

Order Decapoda

(most mangrove mud-dwelling and costal crabs are excluded)

Infraorder Astacidea (5 genera)

Cambaridae Distocambarus (= Fitzcambarus)

Parastacidae Engaeus, Euastacus, Parastacus, Virilastacus

Infraorder Caridea (1 genus)

Merguiidae Merguia

Infraorder Anomura (2 genera)

Coenobitidae Birgus, Coenobita

Infraorder Brachyura (73+ genera)

Gecarcinidae Cardisoma, Discoplax, Gecarcinus, Gecarcoidea, Johngarthia, Tuerkayana

Gecarcinucidae Arachnothelphusa, Ceylonthelphusa, Holthuisana (Austrothelphusa), Sayamia, 
Sundathelphusa, Terrathelphusa, Thelphusula

Grapsidae Geograpsus, Goniopsis, Metopograpsus

Parathelphusidae Esanthelphusa, Oziotelphusa, Parathelphusa, Perbrinckia

Potamidae Binhthuanomon, Calcipotamon, Candidiopotamon, Carpomon, Chinapotamon, 
Dromothelphusa, Gempala, Geothelphusa, Indochinamon, Johora, Krishnamon, 
Nanhaipotamon, Neotiwaripotamon, Phaibulamon, Pudaengon, Qianguimon, Rathbunamon, 
Ryukyum, Socotra, Somanniathelphusa, Thaiphusa, Thaipotamon, Tiwaripotamon

Potamonautidae Globonautes, Liberonautes, Madagapotamon, Malagasya, Potamonautes, Sudanonautes

Pseudothelphusidae Epilobocera, Guinotia, Ptychophallus

Sesarmidae Aratus, Armases, Chiromantes, Episesarma, Geosesarma, Geosesarmamirum, Haberma, 
Karstama, Labuanium, Metasesarma, Metopaulias, Neosarmatium, Parasesarma, 
Perisesarma, Scandarma, Sesarmoides, Sesarmops, Selatium, Tiomanium

Trichodactylidae Trichodactylus

Varunidae Chasmagnathus
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Isopoda are the most advanced, adapted, and successful land colonizers 
presented by the cosmopolitan suborder Oniscidea (woodlice). Oniscidea in-
clude ~ 40 families with ~ 552 genera and ~ 4,000 described species, while 
an estimated diversity is close to 5,000–7,000 extant species (Schmalfuss 
2003; Javidkar et al. 2015; Sfenthourakis and Taiti 2015). Due to their wide 
distribution, diversity, and high abundance, woodlice are the best-studied ter-
restrial crustaceans. In addition, there are several semi-terrestrial burrowing 
species of the genus Phreatoicopsis (Phreatoicidea: Amphisopodidae) known 
from wetlands or swamps of the Grampians National Park, Australia (Spencer 
and Hall 1896; Wilson and Keable 2002).

Terrestrial and semi-terrestrial Decapoda are represented by four infraor-
ders: Reptantia (crayfish) (~ 60 species), Anomura (hermit crabs) (~ 18 spe-
cies), Caridea (shrimp) (2–4 species), and Brachyura (crabs) (~ 300 species) 
(Table 3). Terrestrial representatives of Reptantia are limited to some members 
of the Cambaridae and Parastacidae, living in damp soils and nearly complete-
ly independent of surface waters. The evolution of terrestriality is especial-
ly characteristic of the genera Engaeus (> 35 species), some Euastacus and 
Cherax species from Australia and Tasmania, Parastacus (> 14 species) and 
Virilastacus (4 species) from South America (mainly Chile), and Distocambarus 
(= Fitzcambarus) (4 species) from the southeastern USA (Georgia/North Caro-
lina) (Horwitz 1990; Furse and Wild 2002; Rudolph and Crandall 2012; Reynolds 
et al. 2013; McCormack and Raadik 2021). Most of these crayfish build deep 
and complex burrows that are not associated with permanent water reservoirs 
(Welch and Eversole 2006). They spend their entire life cycle inside the burrows 
feeding on roots and leaves, collecting the latter from the soil surface, and mak-
ing frequent excursions from the burrows at night or after rain floods or snow-
melts, as do Fallicambarus (Creaserinus) fodiens (Decapoda: Cambaridae) in 
the USA and Canada (Suter and Richardson 1977; Growns and Richardson 
1988; Richardson and Swain 1990; Norrocky 1991; Guiaşu 2007; Graham et al. 
2022). Infraorder Anomura is represented in terrestrial habitats by hermit crabs 
of the family Coenobitidae, including the genus Coenobita (> 17 species) and 
the coconut crab Birgus latro (Rahayu et al. 2016). Among Caridea, two shrimp 
species of the genus Merguia (Merguiidae) show a semi-terrestrial lifestyle, in-
habiting fringe or riverine mangrove swamps and climbing tree trunks at night 
during the low tides (Abele 1970; Vannini and Oluoch 1993). In addition, two 
species of the genus Potamalpheops, the Asian P. kisi, and the Australian P. han-
leyi, were also found in semi-terrestrial habitats of mangrove forests (Bruce 
1991; Marin 2021). The highest grades of adaptations to terrestrial lifestyle 
within the Brachyura are realized in Gecarcinidae (> 20 species), Sesarmidae 
(> 250 species), and some representatives of Gecarcinucidae, Potamidae, Ge-
carcinidae, Potamonautidae, Pseudothelphusidae, and Trichodactylidae (Bright 
and Hogue 1972; Biju Kumar et al. 2017; Ng and Ng 2018); although the term 
“land crab” is often used to mean solely the representatives of the family Gecar-
cinidae (Burggren and McMahon 1988; De Grave et al. 2009).

We would like to devote a separate paragraph to peculiar records of crus-
taceans in soil communities, which seem unusual even in the light of this re-
view. In addition to Talitroidea, several amphipod species of genera Niphar-
gus and Microniphargus (Niphargidae) have been reported from soil habitats 
(Lagidze et al. 1974; Turquin 1983; Hudec et al. 2017). Niphargus talikadzei 
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was described as “the first true soil-dwelling Niphargus species” (Lagidze et 
al. 1974) from Georgia (Caucasus), an extremely aberrant species Niphargus 
rhenorhodanensis from interstitial and soil capillary cavities in France (Mathieu 
et al. 1994), while several Microniphargus species have been occasionally re-
corded in soil samples in Ireland (Arnscheidt et al. 2008, 2012). The Amphipod 
Rudolphia macrodactylus (Paraleptamphopidae) was described from the soil 
burrows of semi-terrestrial crayfish Virilastacus rucapihuelensis (Parastacidae) 
and surrounding peat bogs in Chile (Grosso and Peralta 2009). A tiny amphipod 
of the genus Palearcticarellus (Crangonyctidae) has also been recorded from a 
wet moss around springs in the Kurai highland valley (steppe) in Altai, Russia, 
but not in the spring itself, where they were likely preyed upon by larger species 
of the genus Gammarus (Palatov and Marin 2020). Even more strange is the 
record of Branchiopoda in soil samples (Battigelli et al. 1994). All these animals 
are characteristic of small epigean (Brachiopoda) or subterranean (Niphargi-
dae) water reservoirs (e.g., Fišer 2019), and probably should not be considered 
as true soil inhabitants, although our knowledge of the biology of these crusta-
ceans is still strongly limited.

Abundance (density and biomass)

Terrestrial crustaceans can reach high densities and abundance (Table 4), al-
though for some groups, namely Brachiopoda (Anomopoda) and Ostracoda, 
such data are not yet available. Small-sized Copepoda, mainly harpacticoids, 
were reported to be “surprisingly abundant” in many terrestrial and semi-ter-
restrial habitats (Plowman 2006; Fiers and Ghenne 2000; Reid 2001; Reid and 
Rocha 2003), reaching up to 3% of all sampled animals (Battigelli et al. 1992; 
Fiers 2013). The density of Copepoda (54,400–93,600 ind/m2) was comparable 
to that of most abundant soil microarthropods, i.e., Acari (38,600–189,000 ind/
m2) and Collembola (34,800–140,300 ind/m2) in the wet cedar-hemlock forest 
in British Columbia (Battigelli et al. 1992). The biomass of these animals has 
been rarely measured. Schaefer and Schauermann (1990) reported a dry mass 
of harpacticoids of ~ 0.6–2.0 mg/m2 in two beech forests in Germany with a 
density of 3,900–3,300 ind/m2. Based on recorded densities, the biomass of 
microcrustaceans can be much higher in some habitats.

Terrestrial Amphipoda and Isopoda are medium-sized arthropods (typically 
≤ 30 mm in body length and dry weight not exceeding 50–70 mg). Their abun-
dance and biomass can be comparable to those of millipedes and other co-di-
mensional representatives of soil macrofauna (David et al. 1999; Messelink 
and Bloemhard 2007; David and Handa 2010) (Table 4). The highest known 
biomass is reported for the desert woodlouse Hemilepistus reaumurii (~ 20 kg/
ha with a population density of ~ 50 ind/m2), which is comparable to the com-
bined biomass of desert mammals (~ 40 kg/ha) in the same habitats (Markwi-
ese et al. 2001). This impressive statistic can be somewhat overestimated as it 
reflects densities of woodlice aggregations observed at the microhabitat scale 
(Broly et al. 2012).

Terrestrial Decapoda also achieve significant abundance, as well as the high-
est values of biomass among terrestrial arthropods, also being the heaviest of 
all terrestrial arthropods. In particular, the robber crab Birgus latro is the largest 
terrestrial arthropod, reaching 1 m in length from leg to leg and ~ 12 cm in width 
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Table 4. The maximum known abundance (density or biomass) of terrestrial crustaceans.

Species or taxa Habitat Abundance Reference

Microcrustacea

Harpacticoid copepods, 
probably one species

Beach forests in Germany 3,300–3,900 ind/m2 
0.6–2.0 mg d.wt./m2

Schaeffer and Schauermann 
1990

Copepoda Conifer subalpine forest in 
France

3,700 ind/m2 Bernier and Gillet 2012

Different harpacticoids Canadian tundra >6,500 ind/m2 Bliss et al. 1973

Harpacticoid Forficatocaris 
schadeni

Wet campo marshes of 
central Brazil

>178,000 ind/m2 Reid 1982

Copepoda, mainly 
harpacticoids

Wet cedar-hemlock forest in 
British Columbia

>54,400–93,600 ind/m2 Battigelli et al. 1992

Macrocrustacea

Landhoppers (Amphipoda: Talitroidea)

Makawe hurleyi New Zealand forests 1230–2670 ind/m2 Duncan 1994

Several syntopic talitroids Tasmanian forests >10,000 ind/m2 Friend and Richardson 1987

Allorchestes compressa The coast of Western 
Australia

110 ind/g of algae 
remnants

Lenanton et al. 1982

Bellorchestia quoyana 
(= Talorchestia quoyana)

Coastal sand beaches in 
New Zealand

11.8 g/m2 Marsden 1991

Woodlice (Isopoda: Oniscidea)

Woodlice Temperate forests 35–630 ind/m2 Topp et al. 2006

Atlantoscia floridana Semi-deciduous forest of 
Southern Brazil

1040 ind/m2 Araujo and Bond-Buckup 2005

Woodlice Calcareous grasslands 800–3000 ind/m2 Paoletti and Hassall 1999; 
Gongalsky et al. 2005

Porcellio scaber Northern France 5070 ind/m2 in 
aggregations

Broly et al. 2016

Desert woodlice Hemilepistus 
reaumurii

Deserts of Northern Africa 50 ind/m2 and 2 g/m2 
in aggregations

Markwiese et al. 2000

Syntopic Atlantoscia floridana 
+ Balloniscus glaber

Semi-deciduous forest of 
Southern Brazil

2.56 g/m2 Quadros and Araujo 2008

Woodlice Temperate forests 0.09–0.35 g/m2 White 1968

Crabs and hermit crabs (Decapoda)

Gecarcinus quadratus Mainland forests of Costa-
Rica

0.8–6 ind/m2 Sherman 2002, 2003; 
Lindquist and Carroll 2004; 

Lindquist et al. 2009

Birgus latro Christmas Island 41–166 ind/ha Rumpff 1986; Schiller 1988

Gecarcinus lateralis Tropical semi-deciduous 
forests of Central America 

and Florida

1–3 ind/m2 and 2 
burrows/m2

Bliss et al. 1978; Britton et al. 
1982; Delfosse 1990; Kellman 

and Delfosse 1993

Gecarcoidea natalis Christmas Island 1.3–2.6 ind/m2 
(migrations) and 1.8 

burrows/m2, with 
the estimated peak 
biomass close to 

113.7–145.4 g/m2

Hicks 1985; O’Dowd and 
Lake 1991; Green et al. 1997; 

Adamczewska and Morris 
2001

Cardisoma crassum Mexico the average density 
1.66 burrow/m2

Vázquez-López et al. 2014
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of the carapace with a weight of up to 4.0 kg (Brown and Fielder 1991; Drew 
et al. 2010, 2013). With a relatively large size (2–12 cm of carapace width and 
weight occasionally > 500 g) and a density often exceeding 1 ind/m2, the total 
biomass of land crabs can reach 1000 kg/ha and higher, especially during the 
annual breeding migrations (see below). In tropical island and inland forests, the 
biomass of terrestrial decapods released in the absence of natural enemies and 
competitors (Green 1997; Lindquist et al. 2009), can exceed the total biomass 
of animals reported in tropical rain forests in Costa Rica (115 kg/ha; Odum et al. 
1970) and the central Amazon (210 kg/ha; Fittkau and Klinge 1973) (Table 4).

Summarizing, both micro- and macrocrustaceans are widely distributed in 
terrestrial environments, with the greatest diversity and abundance in warm 
and humid habitats, such as tropical and subtropical coastal forests. Large 
Decapoda species reach the maximum density and biomass on well-isolated 
tropical islands, which should be likely ascribed to the absence of competitors 
and predators, like mammals and forest birds. Medium-sized landhoppers and 
especially woodlice are acknowledged components of soil macrofauna in tem-
perate and even subarctic ecosystems. Tiny harpacticoid and cyclopoid cope-
pods are common members of the soil mesofauna and possibly occupy more 
ecological niches than is usually assumed, but their density and biomass are 
still underestimated.

Additional literature on the topic

Diversity, distribution, and evolution of woodlice are reviewed in Edney (1954), 
Warburg (1993), Sfenthourakis et al. (2004, 2020), Loureiro et al. (2005), and 
Hornung (2011); talitroids in Richardson and Swain (2000), terrestrial crabs in 
Burggren and McMahon (1988), crayfish in Reynolds et al (2013), and anomu-
rans in Greenaway (2003).

Adaptations to a terrestrial lifestyle

The transition from aquatic habitats to a terrestrial lifestyle required numerous 
adaptations in morphology, respiratory physiology, osmoregulation and water 
balance, excretion, respiration, sensory perception, thermoregulation, molting, 
reproduction, and behavior. Terrestrial crustaceans are in general morphologi-
cally similar to their aquatic ancestors, with morphological pre-adaptations to 

Species or taxa Habitat Abundance Reference

Cardisoma guanhumi Venezuelan coastline and 
Florida

5.48 burrows/m2 
(Venezuella) and 

≥ 200 g/m2 (Florida)

Gifford 1962; Green 1997; 
Carmona-Suárez 2011

Gecarcinus planatus Clipperton Atoll up to 6 ind/m2 Ehrhardt and Niaussat 1970; 
Turkay 1973; Wolcott 1988

Coenobita rugosus Andaman Coast of Thailand up to 8.4 ind/m2 Bundhitwongrut et al. 2014

Coenobita clypeatus Bahamian islands ~ 14.3 crabs/m2 Morrison and Spiller 2006

Sympatric Coenobita spp. Vegetated area of Bahamian 
islands

46 ind/m2 in dense 
agglomerations

Morrison and Spiller 2006

Uca annulipes Coastal habitats of East 
Africa

175 ind/m2 Skov et al. 2002
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the terrestrial lifestyle differing in the main lineages. These adaptations can be 
categorized into five classes ranging from T1 (lowest) to T5 (highest) depend-
ing on the degree of independence from immersion in water and the need for 
access to water for breeding (Powers and Bliss 1983), although this classifi-
cation is currently rarely used. Schubart et al. (2000) proposed an alternative 
system that includes three simplified degrees of terrestriality as follows: (A) 
terrestrial adults with marine larvae, (B) limnic-terrestrial adults (spend most of 
their lives in or near freshwater) with marine larvae, and (C) adults that breed 
in inland waters and hence are independent from the ocean. This classification 
is based on the paths of land penetration, which are reflected in the modern 
biology and ecology of crustaceans. Taxa derived from the marine environ-
ment must release larvae into the sea, returning to the mainland as the last 
zoea/megalopa stages, while taxa of freshwater origin mostly have reduced 
or abbreviated development and can live in terrestrial habitats far from the sea 
coastline (Wolcott 1988).

Studies on the mechanisms of terrestrialization rarely concern microcrusta-
ceans, which have a very limited set of specific adaptations (e.g., Cammaerts 
and Mertens 1999; Chiambeng and Dumont 1999). Therefore, most examples 
below are representatives of macrocrustaceans.

Morphological adaptations

Air-breathing structures and cuticle

Adaptations for air-breathing and preventing evaporation, a prerequisite for the 
terrestrial lifestyle, are represented by pleopodal lungs, or “pseudotrachea”, in 
woodlice, ancestrally derived from pleopodal gills, which can be conditionally 
categorized into three types: dorsal respiratory fields, uncovered, and covered 
lungs (Schmidt and Wägele 2001; Paoli et al. 2002; Hornung 2011; Csonka et 
al. 2013; Ernst et al. 2020; Sfenthourakis et al. 2020). Similar structures are 
presented on the abdomen and posterior surface of the carapace in terres-
trial hermit crabs (Morris 2002; Farrelly and Greenaway 2005). Because the 
water content is related to the body mass, and water loss is proportional to 
the body surface, the loss of water through pleopods is most critical for small-
size species, while larger species lose relatively less water through their pleop-
ods and cuticle. Passive respiration using pleopods (in contrast to abdominal/
branchiostegal lungs in Decapoda or tracheae in Insecta; Schmidt and Wägele 
2001; Garwood and Edgecombe 2011) and the need to enforce the thin cuticle 
ensured further ecological diversification in woodlice. A trend of gill reduction 
is also described in talitroids (Moore and Taylor 1984; Richardson 1998). De-
spite elaborate adaptations, land-dwelling woodlice and talitroids are still fee-
bly protected from desiccation, primarily due to the absence of waxy cuticle 
(Hadley and Quinlan 1984). The presence of specific epicuticular lipids reduces 
water loss due to evaporation in woodlice of the genera Buddelundia (arid re-
gions of Australia), Hemilepistus (Sahara and Negev deserts), and especially in 
Venezillo arizonicus (Arizona desert) (Cloudsley-Thompson 1956, 1975, 1988; 
Warburg 1965a, 1965b). Furthermore, some woodlice possess air-breathing 
organs remarkably similar to tracheae in insects that expand and enter the tho-
racic body trunk (see Ferrara et al. 1997).
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Terrestrial hermit crabs have developed specific abdominal lungs, a vascular 
network in the thin dorsal integument of the abdomen (Farrelly and Greenaway 
2005), while the number of gills and their area decreases with increasing ter-
restriality in brachyuran crabs (Farrelly and Greenaway 1992, 1993, 1994; 
Greenaway 1999). The most advanced coconut crab Birgus latro has markedly 
reduced gills, while gas exchange mostly occurs in specific respiration struc-
tures (branchiostegal and abdominal lungs) (Greenaway et al. 1988; Farrelly 
and Greenaway 2005), represented by vascular casts protruding into an aerial 
chamber, resulting in a large surface area. The diffusion barrier in these struc-
tures is shorter and hemolymph from the lungs goes directly to the pericardial 
sinus; this species also has the highest blood pressure (50 mm Hg) among 
crustaceans (Greenaway et al. 1988, 1990; Greenaway 2001). The usage of a 
protective gastropod shell in land hermit crabs favored the evolution of the ab-
dominal lung, while the rejection of this heavy shell by Birgus latro also stimu-
lated the development of branchiostegal lungs, which allowed effective coloni-
zation of terrestrial and even arboreal habitats (Greenaway 2003; Farrelly and 
Greenaway 2005). The cuticle of the gill lamellae of almost all air-breathing 
terrestrial decapods is usually much thicker than that of their aquatic relatives 
(Taylor and Taylor 1992). The surface of the gills of most terrestrial brachyu-
rans can also be increased by various morphological structures, ranging from 
the thickening of the marginal canal (Cardisoma hirtipes), marginal nodular 
swellings (Geograpsus grayi) (Farrelly and Greenaway 1992), and vascular 
casts decorating the gill and branchial chamber surface (Gecarcoidea natalis 
and G. lalandii) (Cameron 1981; Farrelly and Greenaway 1992; Morris and De-
la-Cruz 1998; Morris 2002). Terrestrial grapsid and gecarcinid crabs also have 
highly developed lung-like structures in addition to their gills, increasing the 
surface area for gas exchange (Farrelly and Greenaway 1993).

Land crabs and hermit crabs also have physiological changes in the respi-
ratory organs. For example, they have developed a double circulation of hemo-
lymph either through the lungs or through the gills. In addition, one of the func-
tions of the gills in the aquatic environment, namely the exchange of salt and 
ammonia with water, does not work in terrestrial species, which contributed to 
the development of other physiological adaptations.

Body size

The body size of terrestrial crustaceans does not obey most known biolog-
ical rules (Karagkouni et al. 2016a, b), except for the above-mentioned rela-
tionships with the evaporation intensity. In smaller macrocrustaceans such 
as landhoppers and woodlice, body size reduction can be considered as an 
adaptation to living in narrow spaces (Loureiro et al. 2005; Hornung 2011). A 
positive correlation between body size and latitude is observed in terrestrial 
crustaceans in arid habitats and partly in a temperate climate (Karagkouni et 
al. 2016a, b). On the other hand, the terrestrial hermit crab Birgus latro, living 
on tropical Indo-West Pacific oceanic islands with a warm and humid climate, 
is one of the largest present-day arthropods (Drew et al. 2010, 2013). Tropical 
South American gecarcinids, Cardisoma guanhumi, and C. crassum, the largest 
known forest-dwelling crab species, can reach a maximum width of the cara-
pace of 130 mm and a weight of 500 g (Ehrhardt and Niaussat 1970; Pérez-Chi 
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2005), while Tuerkayana hirtipes from Andaman Islands have a weight of up to 
600 g (Alcock 1900; after Green 1997). A wide range of predators apparently 
preys upon smaller talitroids and woodlice, so that the island environment does 
not exert strong selection pressure on their body size (Karagkouni et al. 2016a).

It is also worth mention here that an important ecological advantage of crus-
taceans over other terrestrial arthropods is the growth throughout life and the 
ability to regenerate limbs, whereas the molting process and subsequent calci-
fication represent an extremely vulnerable stage of their life cycle.

Limbs and mobility

Life on land is impossible without the ability to move using principles very dif-
ferent from those used in the water. Most true terrestrial crustaceans are not 
able to swim as adults and may drown in the water, while they can crawl in a 
moist environment. Nevertheless, their ability to move over land is determined 
by the morphology of their aquatic ancestors.

Terrestrial brachiopods (cladocerans) differ from their aquatic relatives by 
reduced antennae and eyes, stronger armored (spinulated) limbs and the pres-
ence of robust teeth on their post-abdominal claw (Cammaerts and Mertens 
1999; Chiambeng and Dumont 1999; Sousa et al. 2017).

Terrestrial ostracods also hardly differ in morphology from their aquatic rel-
atives, except for the progressive loss of swimming setae, whereas the second 
pair of antennae became strong. Together with the fusion of some segments, 
this makes the limbs better suitable for crawling. This can be considered as a 
specific adaptation to terrestrial habitats, characteristic of non-related lineages 
(genera) (De Deckker 1983; Powers and Bliss 1983; Martens et al. 2004; Pinto et 
al. 2008). All known soil- and leaf litter-dwelling copepods have elongated worm-
like bodies, especially typical of canthocamptids that allow them to creep in nar-
row pores in moist edaphic habitats (Fiers 2013). Diapausing highly protected 
eggs and cysts produced by Copepoda and Ostracoda allow them to cross wide 
areas of the land with the help of wind or vertebrates (Vogt 2016; Glime 2017a).

Terrestrial talitroids (Talitroidea) do not move very fast on the ground, but 
they walk efficiently upright, as well as jump like fleas, which helps to avoid 
predators (Bracht 1980; Wan and Gorb 2021). The body-catapult mechanism of 
Talitrus saltator, consisting of the arc-shaped structures at the leading edge of 
the five posterior segments, having fibrous microstructures along it in a circum-
ferential direction and containing a large amount of elastic tissue and a small 
amount of chitin, can accumulate a large amount of energy to enhance the 
force of the jump. It has an output power of ~ 1.7–5.7 kW/kg, which is 3.4–11.4 
times higher than the limit of the output power of muscles of other arthropods 
(Wan and Gorb 2021). Woodlice reflexively move faster in dry conditions (un-
favorable environments) and slower in wet ones (Fraenkel and Gunn 1961). In 
addition, woodlice show thigmokinesis, meaning they stop moving when they 
are close to a solid object, including other individuals, so they often form clus-
ters in humid microsites (Friedlander 1964; Sutton 1972).

Terrestrial crabs are well adapted for fast movement to escape predators, for 
example, the semi-terrestrial Hawaiian ghost crab Ocypode ceratophthalmus is 
among the fastest known wingless land invertebrates reaching running speed 
of 3 m sec-1 (Burrows and Hoyle 1973; Florey and Hoyle 1976). Unusually long legs 
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of forest crabs of the family Gecarcinucidae allow them to climb trees (Grinang et 
al. 2015; Biju Kumar et al. 2017; Ng and Ng 2018), and efficiently move along the 
outcrops of karst massifs (Shih and Do 2014; Do et al. 2016; Huang et al. 2020).

Sensory organs (thermal, humidity, olfactory, and visual sensitivity)

Woodlice and talitroids have effective temperature and humidity receptors allow-
ing them to select warm or wet habitats or to avoid extreme temperatures and 
dry areas (Warburg 1964, 1968, 1993; Morritt 1998; Lagerspetz and Vainio 2007). 
Some woodlice have specific temperature-sensitive neurons that respond to 
evaporative heat loss and humidity (Schmalfuss 1998; Hornung 2011). The sensi-
tivity of antennae to temperature may depend on local water loss from thin-walled 
structures, which probably contain mechanosensory neurons (Sutton 1972, 1980; 
Hallberg and Skog 2011; Schmidt and Mellon 2011). It is assumed that the anten-
nae, as well as the tritocerebral processing structures associated with them, par-
tially compensate for the loss or significant reduction of the (deutocerebral) pri-
mary olfactory pathway in terrestrial talitroids and oniscids (Krieger et al. 2021).

Although the morphological structure of antennae in coenobitid hermit crabs 
is completely similar to the structure of the chemoreceptive organs of related 
aquatic species (Ghiradella et al. 1968a, 1968b), their olfactory lobes in the 
brain are significantly increased compared to their aquatic relatives (Krång et 
al. 2012; Polanska et al. 2020; Krieger et al. 2021). Coenobita compressus can 
detect odors of feces, fruit, and fish from a distance of at least 5 m by detecting 
volatile chemical signals and can detect non-volatile compounds using contact 
chemoreception (Rittschof and Sutherland 1986; Dunham and Gilchrist 1988). 
Acetoin from coconut and arenga fruit was the only one of the 15 volatile com-
pounds tested that attracted omnivorous robber crab Birgus latro (Knaden et al. 
2019), which has an olfactory system similar to that of insects (Stensmyr et al. 
2005). In contrast, terrestrial talitroids, woodlice, and crabs have reduced and 
miniaturized antennae and olfactory aesthetascs, as well as primary olfactory 
processing brain centers, suggesting a loss of olfaction during the evolution on 
land (Kuenen and Nooteboom 1963; Krieger et al. 2015, 2021).

Terrestrial crabs and hermit crabs typically have well-developed visual neuro-
piles and neuronal substrates for a sophisticated analysis of the compound eye 
input. Vision plays an important role in their behavior such as food and habitat 
search, mating, and orientation (Krieger et al. 2015; Chou et al. 2020). The fid-
dler crabs of the genus Uca can distinguish colors (Detto 2007; Jordão et al. 
2007) and possesses ultraviolet and polarization vision (Detto and Backwell 
2009; How et al. 2012), which is an important factor for their orientation and 
social interactions (Detto et al. 2006; Detto 2007). The visual system of Coeno-
bita is separated into peripheral and central viewing areas (Ping et al. 2015).

Physiological adaptations

Feeding and digestion

Crustaceans are primarily detritophages or herbivores, with the feeding ob-
jects ranging from small organic particles extracted from soil to leaf litter, 
seeds, flowers, and fruits. The problems associated with a low-quality plant 



112ZooKeys 1169: 95–162 (2023), DOI: 10.3897/zookeys.1169.97812

Ivan N. Marin & Alexei V. Tiunov: Terrestrial crustaceans

diet can potentially be avoided by selecting the most palatable food items. 
To improve energy efficiency, crustaceans can supplement a plant-based diet 
with animal tissues, but only a few species became carnivorous. Other trophic 
strategies of crustaceans include low intake rates, longer retention of digesta, 
and efficient assimilation of structural carbohydrates (Linton and Greenaway 
2007). Many species, especially small-sized macrocrustaceans, are omnivo-
rous and respond to spatial and temporal changes in the quality or quanti-
ty of food resources by changing their activity and feeding tactics, including 
coprophagy (Hassall and Rushton 1982). Effective mechanical crushing of 
coarse plant material is necessary to increase the surface of the food sub-
strate exposed to digestive enzymes (Johnston et al. 2005). All crustaceans 
have powerful jaws for the initial crushing of plant material; after swallowing 
the pieces are further crushed by a gastric mill (Linton and Greenaway 2004). 
Active cellulases and laminarinases have been identified in the digestive 
juice, gut, and midgut gland or hepatopancreas of a wide variety of crusta-
cean species allowing them to hydrolyze cellulose and hemicellulose to their 
constituent sugars (reviewed in Linton and Greenaway 2007). Lichenase and 
xylanase have been less studied but are present in the digestive juice and may 
be common in Crustacea (Linton and Greenaway 2004). Isopods depend on 
the hydrolases of microorganisms (Kozlovskaya and Striganova 1977), includ-
ing fungal enzymes such as xylanase and cellulase (Kukor and Martin 1986). 
The dependence of woodlice on the microbial activity of leaf litter, measured 
in terms of cellulase activity, has been repeatedly demonstrated (Uesbeck and 
Topp 1995; Zimmer and Topp 1997).

Water balance and osmoregulation

The tolerance to desiccation is not likely to be the most important factor con-
tributing to the success of macrocrustaceans in terrestrial habitats (Lazo-
Wasem 1984; Moore and Francis 1985). The absence of any specific physio-
logical adaptation in osmoregulation suggests that they were not subjected to 
the great desiccation stress during the evolution, since otherwise one would 
expect some capacity to deal with hyperosmotic stresses caused by desicca-
tion (Morritt 1988). The osmotic pressure of the hemolymph and exosomatic 
fluid (400–850 mOs, usually 700–850 mOs) in most terrestrial species are 
slightly lower than in seawater, although in talitroid Makawe hurleyi the mean 
osmotic pressure of hemolymph is ~ 45% of seawater (Duncan 1985). It was 
suggested that the lack of ions, especially chloride (Cl-) and sodium (Na+), 
might restrict the distribution of talitroid species to coastal areas (Spicer et 
al. 1987; Morritt and Spicer 1998; Richardson et al. 2001a, b, 2003; Cowling 
et al. 2003, 2004). Water loss due to evaporation over 25% is fatal for beach 
flea Orchestia gammarellus (Moore and Francis 1986b; Morritt 1987), and the 
threshold of 30% was reported for another species, Platorchestia platensis 
(Garces 1988). However, physiological adaptations related to ion regulation 
were seemingly more important in the evolution of landhoppers than adapta-
tions to resist the effects of desiccation (Friend and Richardson 1986; Moore 
and Francis 1986b). Some oniscoids and talitroids can absorb water not 
through the oral route, but through the cuticle (Hoese 1981, 1982; Moore and 
Richardson 1992).
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Almost all land crabs are restricted to tropical and subtropical humid eco-
systems, although they depend not so much on the temperature and humidity 
of the environment, as on these parameters inside the branchial chamber (Wol-
cott 1988). Fluctuations in ambient temperature and environmental conditions 
generally favor evaporative water loss, due to increased metabolism (Weinstein 
1998). The semi-terrestrial potamonid crab Sudanonautes africanus from wet 
rain forests of West Africa tolerates water loss of ≤ 20% of body weight (34% 
of total body water) (Lutz 1969) and coastal hermit crab Coenobita brevimanus 
up to 28% of total body water (Burggren and McMahon 1981). The Australian 
desert crab Austrothelpusa transversa can lose up to 42% of body weight, hav-
ing one of the highest rates of water content in tissues among land crabs. De-
spite these features, the crab can only survive ~ 90 h at a relative humidity of 
70% (rH) and 20 °C (MacMillen and Greenaway 1978; Greenaway and MacMil-
len 1978; Burggren and McMahon 1981). Of the other land crabs studied, only 
Gecarcinus lateralis can tolerate a similar to Austrothelpusa transversa degree 
of weight loss (< 40%) (Bliss et al. 1966). In land crabs and Birgus latro, dehydra-
tion and changes in hemolymph concentration are resisted using combinations 
of both behavioral (immersion, burrowing, water storage in the body or branchi-
al chambers, and drinking) and morphophysiological (evolutionary reduction in 
gill size, urine reprocessing, excretion of nitrogenous waste as urea or uric acid) 
adaptations (Greenaway 1988; Greenaway et al. 1988; Wolcott 1991).

Excretion

The majority of terrestrial crustaceans, like their aquatic ancestors, are am-
monotelic, excreting ammonia as the main waste product (Dresel and Moyle 
1950; Linton et al. 2017). Only one species, Birgus latro is known to be primarily 
purinotelic, producing white fecal pellets of guanine and uric acid (Greenaway 
and Morris 1989; Linton et al. 2005, 2017). Even completely air-breathing ge-
carcinid crabs with well-developed lung-like structures, still require periodic 
immersion in water to facilitate nitrogen excretion (Adamczewska and Mor-
ris 1996; Dela-Cruz and Morris 1997a, 1997b). Ammonia is eliminated either 
in solution (excretory fluid) or as a gas in woodlice and talitroids (O’Donnell 
and Wright 1995; Linton et al. 2017). Waste nitrogen is stored as transaminat-
ed amino acids such as glutamate, glutamine, and glycine, between excretory 
bouts (Linton et al. 2017). Terrestrial isopods, amphipods, and decapods have 
solid purine urate deposits synthesized from excess dietary nitrogen, which are 
stored inside the connective tissue (Linton and Greenaway 1997, 1998; Linton 
et al. 2017). It has been suggested that these deposits function as either ex-
creta or temporary nitrogen storage and are generally not used during times of 
negative nitrogen balance or in situations of high nitrogen demand (oogenesis 
and molt) (Linton and Greenaway 1997). In woodlice, urates seem to function 
as a cation store during dehydration or as an antioxidant to prevent oxidative 
tissue damage (Linton et al. 2017).

Physiology of breeding

For most terrestrial macrocrustaceans, reproductive biology and reproduction 
cycles are generally similar to their aquatic relatives, although a decrease in 
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the number of eggs in parallel with an increase in the egg size (sometimes only 
one large egg) and reduced (abbreviated) development occurs in some species 
(Williamson 1951; Steele and Steele 1975; Wildish 1979; Cardoso et al. 2001). 
Terrestrial crustaceans are mostly iteroparous, while some woodlice are known 
to be semelparous (Warburg et al. 1993; Linsenmair 2008). All terrestrial mac-
rocrustaceans have internal fertilization, effectively conserving sperm in the 
female genital tract (e.g., Longo et al. 2011). Talitroids and woodlice have direct 
development inside an external pouch formed by the brood plates (oostegites) 
(Richardson et al 2001a, b), without an aquatic larval stage, which is a crucial 
adaptation for a fully terrestrial lifestyle. The larval development of decapods 
depends on their origin. Taxa derived from the marine environment still have to 
release larvae into the sea, returning to the mainland as the last zoeal/megalo-
pa stages, while taxa of freshwater origin mostly have reduced or abbreviated 
development and can live in terrestrial habitats far from the sea coastline (Bliss 
1979; Wolcott 1988). Most terrestrial ostracods are described from asexual 
populations (Pinto et al. 2005a, 2005b), especially in Darwinulidae, whose lin-
eage was asexual for at least 200 Mya (Martens et al. 2003; Pinto et al. 2004, 
2005a, 2005b). Parthenogenesis seems to be a favorable pre-adaptation, since 
most known terrestrial ostracods exhibit very low densities (with some excep-
tions, such as Brazilian Penthesilenula) and are unable to move over long dis-
tances (Pinto et al. 2004, 2005b). Terrestriality of some ostracods may involve 
the protection of fertilized eggs from desiccation. Developing embryos of the 
moss-dweller Scottia audax can be preserved in the maternal shell until they 
become free-living juveniles (Chapman 1961; Glime 2017a).

Low metabolism and longevity

Slow growth and longevity increase the time available for the accumulation 
of dietary nitrogen and other nutrients required for the growth of animals. For 
example, the minimum intermolt nitrogen requirement of Gecarcoidea natalis is 
only 4.8±1.7 mmol N/kg dry body weigh/day due to a low rate of basal protein 
catabolism (0.12±0.04% total body protein/day) and low fecal nitrogen con-
centration (38–56 mmol N/kg of dry weight) (Linton and Greenaway 2000). 
This way, G. natalis can cover the nitrogen requirements of intermolt, molt, and 
oogenesis from its nitrogen-poor leaf litter diet (Linton and Greenaway 2000, 
2007). Mass-specific metabolic rates of animals and thus basal protein catab-
olism and minimum nitrogen requirements decrease with increasing body size. 
Life spans for many terrestrial herbivorous crabs are long with estimates of 
20+ years for G. natalis (Green 2004) and Cardisoma guanhumi (Wolcott 1988), 
12+ years for Coenobita clypeatus (Chace 1972), and 8–17 years for Ucides 
cordatus (Pinheiro et al. 2005). Longevity is seemingly linked to large body size 
in the gecarcinids. The lifespan of Birgus latro is estimated as 40–60 years 
(Greenaway 2003). Sexual maturity in large land crabs is not attained until 3–4 
years of age (Henning 1975; Wolcott 1988; Green 2004; Pinheiro et al. 2005).

Other physiological adaptations

Terrestrial microcrustaceans are fragmentarily studied for any physiological 
adaptations, although the absence of hemoglobin is considered an adaptation 
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for a bryophytic lifestyle in harpacticoids. This suggests that oxygen is pres-
ent in sufficient amounts and energy-requiring development of the pigment is 
not necessary (Green 1959; Glime 2017a, b). Land crab Ocypode quadrata can 
maintain its body temperature lower than the ambient air temperature using 
its enlarged claws and evaporation from the surface of the exoskeleton (Wein-
stein and Full 1994; Weinstein et al. 1994). Semi-terrestrial crabs of the genus 
Uca also use their enlarged claw for heat transfer to or from the environment 
(Windsor et al. 2005). Some woodlice evolved specific chemical (gland secre-
tions and accumulation of potentially toxic concentrations of metals in their 
body tissues), morphological (heavily incrusted armor), and behavioral defens-
es (rolling into a ball or clinging to the substrate) as protection from specialized 
predators (Sutton 1972; Deslippe et al. 1996; Schmalfuss 1984).

Specific behavioral adaptations

Regulation of temperature and humidity

Shore woodlouse Ligia italica, living on and under rocks along the Mediterra-
nean coasts, is strongly photonegative at temperatures of 20–30 °C, somewhat 
less at 6–10 °C, and photopositive at 40 °C when forced to leave rock crevices 
to find a cooler environment (Perttunen 1961). Desert-dwelling woodlice can 
maintain their heat and water exchange within their physiological tolerance lim-
its by nocturnal activity and the ability to roll up into an almost perfect sphere 
thus preventing moisture loss (Linsenmair 1985, 1987, 2008; Shachak 1980; 
Shachak and Newton 1985). Conglobation is considered a mechanism prevent-
ing evaporation since the water loss rate is decreased significantly (up to 35%) 
by this behavior, depending on relative humidity (Smigel and Gibbs 2008).

Gecarcinidae land crabs are diurnal and nocturnal, but their activity is always 
positively correlated with relative humidity (Green 1997), and increases during 
the wet season, when humidity, and also the availability of seeds and seedlings 
are higher (Capistrán-Barradas et al. 2003; Sherman 2003; Lindquist and Carroll 
2004). With the risk of desiccation, the activity of land crabs decreases when 
the humidity falls below 88% and stops below 77% (Green 1997; Hicks 1985). 
The surface soil temperatures (compared to air temperature) have a significant 
negative impact on the crab activity and abundance (Govender et al. 2008). 
Many land crabs spend the daytime inside their burrows, avoiding high surface 
temperatures (Atkinson and Taylor 1988). For example, at an air temperature of 
35 °C and surface soil temperature of ~ 48–50 °C, the temperature inside bur-
rows of land crab Gecarcinus lateralis at 40 cm depth ranged within 28–32 °C, 
providing sufficient protection from high temperatures and low humidity (Bliss 
1968; McMahon and Burggren 1988; Govender et al. 2008). The burrowing in 
the humid soil allows some species to survive with little or no access to free-
standing water (Greenaway and MacMillen 1978; Greenaway 1994). However, 
high ground water levels often preclude deep burrowing, which reduces the 
habitat of some forest crab species (Govender et al. 2008). Aestivation (sum-
mer sleep) is known for desert woodlice (Edney 1964) and terrestrial crabs 
(MacMillen and Greenaway 1978; Storey and Storey 2012). Desert-dwelling 
crabs able to aestivate can remain inside their clay-plugged burrows for up to 6 
years, waiting for the rain (Ng et al. 2008).
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Some desert woodlice have developed social behavior, diurnal activity, and se-
melparous reproductive strategy (Linsenmair 1974, 1985, 1987, 2008; Caubet et 
al. 2008; Hornung 2011). The advantage of semelparous reproduction in this case 
is apparently to invest all the accumulated resources in one reproductive effort 
since the chances of finding suitable conditions in the deserts are small. Aggre-
gation is also considered one of the adaptive mechanisms against desiccation 
(Devigne et al. 2011; Broly et al. 2012, 2013b, 2014) and may create a local humid 
microclimate for all individuals in a small volume (Schliebe 1988). Additionally, 
aggregation stimulates reproduction in females, accelerating their vitellogenesis 
(Caubet et al. 1998) and growth (Takeda 1980), which is probably controlled by 
specific pheromones (Kuenen and Nooteboom 1963; Takeda 1980).

Feeding activity

Saprophagous or herbivorous crustaceans tend to select food items of high-
er quality that contain substantial amounts of easily digestible lipids, carbo-
hydrates, and proteins. For instance, B. latro consumes mainly fruits, seeds, 
and animal material, and practices a highly selective feeding strategy using 
sophisticated olfactory sense (Fletcher et al. 1990; Hicks et al. 1990; Green-
away 2001). The South African woodlouse Alloniscus marinus exhibits unusual 
arboreal feeding behavior by eating the green leaves of the bietou bush Chry-
santhemoides monilifera, but not the forest litter (Glazier and Kleynhans 2015). 
Some crabs feed by rasping leaf tissue from the upper or lower surface of the 
leaves (Cannicci et al. 1996; Erickson et al. 2003). This can enhance the quality 
of ingested material by increasing the ratio of mesophyll tissue to indigestible 
lignin and cutin compared with ingestion of whole leaf material. Intraspecific 
competition between Cardisoma guanhumi in Florida is such that crabs rush 
from their burrows to compete for falling leaves (Herreid 1963). Gecarcinid 
crabs also store leaves in their burrows where fungi and bacteria rapidly col-
onize them, but there is no quantitative data on the rate of utilization of the 
processed litter (Herreid 1963; O’Dowd and Lake 1989; Green et al. 1999). Pre-
dation and cannibalism in Gecarcinus lateralis increase when animals are main-
tained on a low-nitrogen diet (Wolcott and Wolcott 1984, 1987, 1988). Ambush 
predation is known for terrestrial crayfish (Graham et al. 2022). Such feeding 
behavioral adaptations are likely to be widespread in terrestrial crustaceans but 
remain poorly studied.

Parental care

Females of some woodlice provide maternal care to eggs and young, supply-
ing nutrients and providing mancae (early-instar juveniles) with an aqueous 
environment in the modified marsupium (Warburg 1987; Warburg and Rosen-
berg 1996), which is unique among terrestrial arthropods (Surbida and Wright 
2001; Kight and Nevo 2004; Lardies et al. 2004). Marsupium of some terrestrial 
woodlice contains lipid globules in cotyledons that secrete the marsupial flu-
id and supply juveniles with nutrients (Hoese and Janssen 1989; Csonka et 
al. 2015). Maternal care in talitroids includes controlling the osmotic environ-
ment of the pouch, cleaning eggs, and perhaps feeding young in a brood pouch 
(Morritt and Richardson 1998; Richardson et al 2001a, b). Jamaican snail crab 
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Sesarma jarvisi breeds inside water-filled shells of the land snail of the genus 
Pleurodonte and provides parental care for larvae (Diesel and Horst 1995; Die-
sel and Schubart 2000). Vampire crab Geosesarma notophorum and some oth-
er species of the genus from high-altitude forests of Sumatra exhibit a com-
pletely abbreviated development and unusual brooding behavior in which the 
female carries her offspring on the dorsal surface of the carapace for approxi-
mately 2–3 days after hatching (Ng and Tan 1995; Ng et al. 2015b; Ng and Ng 
2019). The most interesting case of parental care is described in the Jamaican 
crab Metopaulias depressus, which includes the long-term maintenance of op-
timal levels of appropriate conditions (oxygen, pH, and calcium (Ca+)) for larval 
development (Diesel 1989; Diesel and Schuh 1993). These eusocial crabs live 
in large colonies consisting of the mother and her offspring, where the older 
offspring participate in the colony defense, and young adult females remain in 
their natal colony as subordinate (non-reproductive) females, with the prospect 
of inheriting their mother bromeliad as a breeding site (Diesel and Schubart 
2000, 2007; Vogt 2012).

Breeding migrations

One of the most important features and adaptations of land gecarcinid crabs is 
the annual migration to the coast to release their eggs into the ocean (Adamcze-
wska and Morris 1996, 2001; Morris 2005; López-Victoria and Werding 2008), 
with the most exciting migrations of breeding females known for Gecarcinus 
ruricola in Providence Island (Hartnoll and Clark 2006), Gecarcoidea natalis in 
Christmas Island (Hicks 1985; Hicks et al. 1990) and Gecarcinus lateralis in 
Florida and Bermuda (Bliss et al. 1978). During these migrations, crabs can 
travel up to 5 km daily for many days to reach the coastline and must maintain 
moving for extended periods, up to 12 h each day (Hicks 1985; Adamczewska 
1997; Green 1997). In land crabs from arid or semi-arid habitats, young individ-
uals grow very quickly after hatching, and then return to the ground and build 
their burrows at the beginning of the dry season (McCann 1938). Very high 
fertility in land crabs, compared to any of soil inhabitants, for example, 19,000–
109,000 eggs in Gecarcinus lateralis, determines the high reproductive potential 
that ensures the prosperity of crabs in terrestrial habitats (Green et al. 1997).

Behavioral adaptations are likely to predominate over morphological and 
physiological ones, including, for example, avoiding harsh conditions, social 
and specific breeding behavior with migrations to water, and other behavioral 
patterns. The main strategies in the hot and dry climate include minimizing wa-
ter evaporation by seeking shelter and having a nocturnal lifestyle. At the same 
time, most of the morphological, physiological, and behavioral adaptations pre-
sented above suggest that terrestrial crustaceans are evolving and adapting to 
terrestrial habitats, but still have a range of strong limitations hampering their 
wider distribution and dominance in terrestrial ecosystems.

Additional literature on the topic

Most studied are adaptations of woodlice for their terrestrial lifestyle such as 
reduction in size (Hornung 2011), specific sensitive structures (Hornung 2011), 
cuticle structure (Bursell 1955; Schmalfuss 1978; Holdich 1984), surface 
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structures (Holdich and Lincoln 1974; Holdich 1984), pleodopodal lungs 
(Cloudsley-Thompson 1988; Schmidt and Wägele 2001; Paoli et al 2002; Wright 
and Ting 2006) and brood pouch structure (Hoese 1984). Numerous reviews 
treat various aspects of arthropod terrestrialization, including locomotion 
(Weihmann 2020) and other behavioral adaptations (Warburg 1968; Powers 
and Bliss 1983; Lagerspetz and Vainio 2007), chemoreception and thermore-
ception (Ache 1982), general physiology (Carefoot 1993; Greenaway 1999), the 
evolution of the olfactory system (Krieger et al. 2015, 2021), respiration (McMa-
hon and Burggren 1988; Morris 2002), nitrogenous waste metabolism (Morris 
2002; Linton et al 2017), water and hemolymph conducting system (Horigu-
chi et al. 2007), nutrition (Zimmer and Topp 1998b; Zimmer 2002a), diseases 
(Provenzano 1983; Federici 1984), and specific adaptation to the arid environ-
ment (Cloudsley-Thompson 1975).

General review of adaptations of Crustacea to land are presented in Edney 
(1968), Bousfield (1968), Bliss and Mantel (1968), Cloudsley-Thompson (1988), 
Morritt and Spicer 1998; Dunlop et al. (2013), Richardson and Araujo (2015), 
Glime (2017a,b), and Sfenthourakis et al. (2020).

Trophic interactions and role in the ecosystems

The feeding activity of macroinvertebrates is considered one of the most im-
portant initial processes of the decomposition of organic matter (Ott et al. 
2012; Griffiths et al. 2021; Potapov et al. 2022). Terrestrial macrocrustaceans, 
along with other macroarthropods (millipedes, termites) and earthworms, can 
be cumulatively classified as primary decomposers and as ecosystem engi-
neers that substantially modify the physical structure of plant litter and soil 
(Jones et al. 1994; Lawton and Jones 1995; Lavelle et al. 1997).

Litter consumption and decomposition

Terrestrial decapods living in coastal forests forage primarily on plant material 
such as leaf litter (Kellman and Delfosse 1993; Sherman 2003), fruits (Capist-
rán-Barradas and Moreno-Casasola 2006), seeds (Garcia-Franco et al. 1991; 
Lindquist and Carroll 2004) and seedlings (Green et al. 1997; Sherman 2002). 
The huge densities of land decapods (crabs and hermit crabs) on oceanic is-
lands lead to the removal of a significant amount of litterfall and changes in the 
structure of the nutrient cycles (O’Dowd and Lake 1989; Kellman and Delfosse 
1993). Decapods sometimes monopolize litter recycling (Green et al. 1997). 
For instance, the Bermuda blackback land crab Gecarcinus lateralis may con-
sume 75–97% of the leaf litter biomass available for decomposition (Kellman 
and Delfosse 1993); the land crab Gecarcoidea natalis processes 39–87% of 
annual litterfall on Christmas Island (Green et al. 1999).

Smaller terrestrial macrocrustaceans, such as talitroids (Friend 1975; O’Han-
lon and Bolger 1999; Handa et al. 2014) and woodlice (Hassall and Sutton 1978; 
Hassall et al. 1987; Mocquard et al. 1988; Špaldoňová and Frouz 2014) are also 
highly efficient detritivores. They can consume 6–55% of the total litterfall, play-
ing an important role in litter decomposition and nutrient mineralization. Fully 
terrestrial woodlice may compete with other saprophagous soil animals for 
high-quality food resources (Rushton and Hassall 1983), whereas competition 
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between sympatric species may be reduced by species-specific nutritional re-
quirements and digestive capabilities (Zimmer et al. 2002).

Crustaceans enhance litter decomposition both directly, via consumption 
and assimilation and indirectly by fragmenting and increasing the surface area 
available for colonization by saprotrophic microbiota and stimulating microbial 
activity in their feces (Coughtrey et al. 1980; Teuben and Roelofsma 1990). As 
could be expected, woodlice are best studied in this respect. Leaf litter eaten 
and digested by isopods differs physically and chemically from intact leaves 
(Hassall et al. 1987; Gunnarsson et al. 1988). Increased microbial activity in the 
gut and fresh feces (Zimmer 2002a, 2002b; Zimmer et al. 2002, 2003) ensures 
the degradation of cellulose (Hartenstein 1964; Zimmer and Topp 1998b; Zim-
mer and Brune 2005) and even phenolic leaf litter compounds (Neuhauser and 
Hartenstein 1976; Zimmer and Topp 1998a; Zimmer 1999). Passing through 
the digestive canal, saprotrophic microflora changes both in density and in 
species composition (Hartenstein 1964, 1982; Coughtrey et al. 1980; Ineson 
and Anderson 1985). Recent studies of gut microbiota in the woodlice Arma-
dillidium vulgare and Porcellionides pruinosus revealed a very diverse bacterial 
community that varies between host populations, suggesting an important pro-
portion of environmental microbes in the gut-associated microbiota (Bouchon 
et al. 2016; Delhoumi et al. 2020). Microbial inoculation of leaf litter increased 
litter palatability (Hartenstein 1964; Hassall et al. 1987; Rushton and Hassall 
1983) and quality (Ullrich et al. 1991; Uesbeck and Topp 1995; Zimmer and 
Topp 1997, 2000) by reducing the C/N ratio and/or quantity of phenolic com-
pounds (Kuiters and Sarink 1986; Poinsot-Balaguer et al. 1993; Zimmer 1999, 
2002a). Noteworthy, woodlice cannot separate low- and high-quality litter (i.e., 
oak vs. alder) immediately after leaves had been shed, but can do so after early 
stages of microbial decomposition, since the microbiota or their waste seem to 
indicate high-quality food (Zimmer et al. 2003).

The consumption and bioturbation of leaf litter affect the chemical composi-
tion and rate of oxygen saturation of the soil, accelerate the decomposition pro-
cesses, and stimulate the activity of fungi and bacteria (Richardson and Morton 
1986; Griffiths et al. 1989; van Wensem 1989; Teuben and Roelofsma 1990; Kautz 
et al. 2000). Talitroids can reduce the rate of leaching of cations, possibly because 
cations are bound in the compact fecal pellets produced by landhoppers (Richard-
son and Morton 1986). An increase in ATP turnover in the Spartina litter grazed by 
the landhopper Orchestia grillus leads to an increase in nitrogen reserves, which 
is important for the long-term health of the coastal forests (Lopez et al. 1977).

Bioturbation

The burrowing activity of terrestrial crustaceans is one of their main ecologi-
cal functions. Smaller species have less of an effect, although the burrowing 
activity of woodlice of the genus Hemilepistus appears to be an important fac-
tor in soil formation in arid regions (Kozlovskaya and Striganova 1977). For-
est crabs and crayfish can significantly affect forest ecosystems by increas-
ing soil aeration through burrow construction (Richardson 1983; Green 2004; 
Pérez-Chi 2005; Gutiérrez et al. 2006), as well as removing the leaf litter and 
causing local nutrient enrichment of the soil by gathering leaves around or 
inside their burrows (O’Dowd and Lake 1989; Sherman 2003, 2006). Crayfish 
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Creaserinus gordoni annually moved over 80 metric tons of soil ha/yr and cre-
ated 29–49 km/ha of subterranean tunnels (Welch et al. 2008). Burrows of 
Procambarus hagenianus may extend 4 m below the surface (Fitzpatrick 1975), 
and in suitable habitats, there may be at least one crayfish burrow system 
per square meter (Reynolds et al. 2013). The activity of the East African land 
crabs Neosarmantium meinerti and Cardisoma carnifex is limited to the upper 
20 cm of soil, where it affects ~ 0.07% of the soil daily or about 25% per year 
(Micheli et al. 1991). In another study, combining estimates of burrow volume, 
density, and turnover suggest that red crabs Gecarcoidea natalis can increase 
the surface area of soil available for gas exchange by ~ 13%, although for one 
year they probably turn over < 1% of the top 20 cm of the forest soil in Mur-
ray Hill, Christmas Island (Green 1997). The physical removal of litter from the 
surface to deeper and moister soil layers may be one of the most important 
indirect contributions to decomposition processes (Hassall et al. 1987). The 
litter mass was 5.0–5.6 times higher in crab exclosures than in control open 
plots (Kellman and Delfosse 1993; Sherman 2003). Leaf litter caching inside 
the burrows is common in gecarcinid land crabs (Fimpel 1975; Henning 1975; 
O’Dowd and Lake 1989), but the accumulation of leaf litter around the entrance 
is described only in Gecarcoidea natalis (O’Dowd and Lake 1989; Green 2004). 
Burrows of large land crabs such as Cardisoma guanhumi are durable and 
turn over very slowly (Herreid and Gifford 1963; Green 2004). Fairly long-lived 
burrows, with an average turnover time of more than 4 years create a mosaic 
of nutrient hotspots potentially useful for seedling growth (O’Dowd and Lake 
1989; Green 2004). They can also have a significant effect on carbon seques-
tration, and since the soil is enriched with nutrients, the density of plant roots is 
higher around burrowing microsites in mainland forests (Sherman 2006). Other 
burrowing terrestrial crustaceans, such as crayfish, perform similar ecological 
functions (Kingwill 2008; Loughman 2010; Bryant et al. 2012). These data sug-
gest that forest crabs and crayfish may have a somewhat different effect on 
aboveground processes compared to crabs in tidal habitats, which constant-
ly dig numerous small burrows (Bertness and Miller 1984; Smith et al. 1991), 
thus constantly aerating the substrate, and sometimes even draining swampy 
hypoxic soils (Katz 1980; Montague 1980, 1982; Takeda and Kurihara 1987).

Plant recruitment

Woodlice Armadillidium vulgare and some other species are partly granivorous, 
in some habitats being efficient predators of seed of Taraxacum, Capsella, 
Poa, and other plants (Saska 2008; Honek et al. 2009; Singer et al. 2012). Aus-
traliodillo bifrons and Porcellio scaber feed on wheat seedlings under laborato-
ry conditions and probably can cause significant damage to wheat seedlings 
when reaching very high densities in the field (Paoletti et al. 2008). The activity 
of land hermit crabs and forest crabs may be a major factor controlling plant 
communities through feeding on seeds and seedlings, recycling nutrients, and 
affecting tree density and size structure (Louda and Zedler 1985; O’Dowd and 
Lake 1991; Green et al. 1999; Lindquist et al. 2009). Land crabs greatly affect 
seedling recruitment in semi-deciduous seasonal dry tropical forests (Delfosse 
1990; Kellman and Delfosse 1993). For example, land crabs Gecarcoidea na-
talis grazed 25 seedling species on Christmas Island, processing more than 
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80% and eating ~ 47% of them (Green et al. 1997). Seedling density was 20-
fold higher, and seedling richness was 5-fold higher in crab eхclosures than in 
unfenced control plots (O’Dowd and Lake 1990; Green et al. 1997). In mainland 
tropical forests, seedling density increased by 144% in crab exclosures (Sher-
man 2002). Annual fluctuations in the density of the crab population may allow 
pulses of tree recruitment in “low crab” years (Green et al. 1997, 2008; Sherman 
2002; Lindquist and Carroll 2004). Indirectly, the removal of leaf litter by crabs 
can change the visibility of seeds to predators, as well as the micro-environ-
mental conditions for seed germination and seedling establishment (Kellman 
and Delfosse 1993). Leaf litter depth and tree seedling density are negatively 
correlated with the burrow density of land crabs Gecarcinus quadratus in Costa 
Rica (Griffiths et al. 2007). Land crabs differentially prey on seeds and seed-
lings along nutrient, chemical, and physical environmental gradients, and crab 
consumption has primacy over many environmental factors, acting as the main 
limiting factor of tropical tree recruitment, and affecting the structural and com-
positional organization of coastal forests (Green et al. 1997).

Predators

Terrestrial microcrustaceans are involved in complex trophic relationships, 
although to date they have been studied fragmentary. The cosmopolitan soil 
harpacticoids Phyllognathopus viguieri actively prey on different species of soil 
nematodes using their modified leaf-like maxillipeds (Lehman and Reid 1993). 
Adults and copepodites of Virbiocyclops silvaticus occasionally consumed 
nematodes and injured oligochaetes (Rocha and Bjornberg 1988). Soil harpac-
ticoid Epactophanes sp. are classified among bacterial-feeding organisms but 
may also feed on nematodes (Birch and Clark 1953; Reid 2001).

Woodlice can prey on smaller animals, e.g., insect larvae. For example, Arma-
dillidium vulgare were observed feeding on pupae of fruit flies Drosophila melan-
ogaster in citrus orchards in California, although alternative food was abundant 
(Edney et al. 1974). Large coconut crab B. latro can prey on other land crabs 
(Krieger et al. 2016), birds, and rats (Kessler 2005; Laidre 2017). The land crab 
Gecarcinus lateralis is a significant predator of the abundant Bahamian land 
snails of the genus Cerion (Quensen III and Woodruff 1997), crab Rodriguezus 
garmani was observed to consume snakes (Maitland 2003), large land crabs 
are major predators of nesting sea birds (Paulay and Starmer 2011). Land her-
mit crabs (Coenobita spp.) and large gecarcinid crabs have been reported to 
feed on an extremely wide dietary spectrum, including dead animals washed 
into the tidal zone and their feces (Burggren and McMahon 1988; Dunham and 
Gilchrist 1988; Thacker 1996). High abundance, along with the ability to dispose 
of all organic residues on the coast and in the surrounding forest in a very short 
time (Hsu et al. 2018) suggests the importance of crabs as consumers of carri-
ons (Degener and Gillaspy 1955; Niering 1956, 1963; Wiens 1962; Page and Wil-
lason 1983). For instance, Coenobita spp. potentially control fly populations by 
rapid removal of carrions. In areas where hermit crabs were common, the flies 
were seemingly less numerous than in areas where hermit crabs were absent 
(Page and Willason 1982, 1983). Small Geosesarma malayanum and Geosesar-
ma peraccae crabs climb into the pitchers of Nepenthes ampullaria and eat the 
prey, but sometimes they fall into the trap and die (Ng and Lim 1987; Ng 1988).
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Prey

Knowledge of the position of microcrustaceans in terrestrial food webs is ex-
tremely limited. In wet habitats, they are likely consumed by predators along 
with other microarthropods. For example, terrestrial harpacticoids are among 
the main prey items of arboreal wandering salamanders Aneides vagrans liv-
ing in wet bryophytes more than 80 meters above the forest floor in the Cal-
ifornian redwood forest in the USA (Camann et al. 2011). Larger crustaceans 
are readily consumed by a wide array of vertebrate and invertebrate predators. 
Generalist predators rarely feed on woodlice (Gorvett 1956), but such cases are 
known for hedgehogs (Shilova-Krassova 1952), shrews (Perneta 1976), moles 
(Godfrey and Crowcroft 1960), frogs, toads, lizards, birds, and some predatory 
arthropods (Sunderland and Sutton 1980; Bureš and Weidinger 2003). On the 
other hand, ants of the tropical genus Leptogenys (Dejean 1997; Dejean and 
Evraerts 1997), spiders of the Palaearctic genus Dysdera (Pollard et al. 1995; 
Rezáč and Pekár 2007; Pekár and Toft 2015) and toad bugs Nerthra macrotho-
rax possess adaptation for the effective capture of armored woodlice and de-
toxication mechanisms alleviating feeding on woodlice (Sunderland and Sutton 
1980; Pekár et al. 2016). Approximately 15 other spider species from ten fami-
lies are suggested to be specialized woodlice predators (Bristowe 1941, 1958; 
Uhlenhaut 2001; Rezáč et al. 2008). The desert scorpion Scorpio maurus is the 
main predator of Hemilepistus reaumurii, which may comprise 70% of the scor-
pion’s diet (Dubinsky et al. 1979; Ward 2009). The nocturnal lifestyle of forest 
talitroids is sometimes explained by the minimization of dehydration as well as 
predation by birds (Friend and Richardson 1986).

Raccoons, coatis, mongooses, cats, foxes, herons, and other migrating and 
local birds feed on land crabs in mainland habitats (Sherman 2002; Lindquist 
and Carroll 2004). In places where there are no large predatory mammals or 
birds, land crabs may be released from the predator pressure, although the co-
conut crab B. latro hunts on land crabs on tropical islands (Alexander 1979; 
Hicks et al. 1990; Pérez-Chi 2005). The invasive yellow crazy ant Anoplolepis 
gracilipes have significantly affected the population of the red land crab Gecar-
coidea natalis on Christmas Island (O’Dowd et al. 2003; Green et al. 2004; Ab-
bott 2005). This had a cascading effect on native species populations at several 
trophic levels (O’Dowd et al. 2003). Invasive predatory nemertean Geonemertes 
pelaensis significantly declined populations of terrestrial crustaceans on some 
Japanese islands (Shinobe et al. 2017). The potential for invasion meltdown 
following the local extinction of crab populations suggests that land crabs are a 
keystone species in the tropical forests of oceanic islands (O’Dowd et al. 2003).

Coconut crabs and crabs of the genera Cardisoma and Ucides are a widely 
recognized food source for humans (Carpenter and Niem 1998; Alves et al. 
2005; Firmo et al. 2012; Maynard and Oxenford 2014) and have ethno-medic-
inal significance (for example, Rana 2018), which is a rare case for sapropha-
gous invertebrates from terrestrial ecosystems.

Antipredatory strategies among terrestrial crustaceans are very diverse and 
include tonic immobility, aggregation or sticking to the ground, the release of 
strongly acidic secretions, jumping, and effective escape (see review in Tuf and 
Ďurajková 2022). In addition, they can team up with other individuals, and use 
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stridulation (Cividini et al 2020). Some species developed prickly tergites and 
aposematic coloration or posture. Most of these strategies have not yet been 
studied in detail.

Parasites and macrosymbionts

Many internal parasites of terrestrial crustaceans are similar to those of their 
aquatic relatives. There are however specifically terrestrial parasites, such as ~ 
150 species of widely distributed Rhinophoridae flies (Insecta: Diptera) known 
as specialized parasitoids of woodlice (Pape and Arnaud 2001; Nihei 2016; 
Wood et al. 2018). Two Caribbean flies, Drosophila carcinophila and Drosophila 
endobranchia, live exclusively on gecarcinoid land crabs, while the Christmas 
Island fly, Lissocephala poweilli, lives on both crabs and hermit crabs, including 
B. latro, completing their larval development on or inside their crustacean hosts 
(Stensmyr et al. 2008). Parasitic relationships between an unidentified species 
of Sphaeroceridae (Diptera) and the land crab Cardisoma crassum are known 
from Cocos Island, Costa Rica (Gуmez 1977). Specialized Cancrincolidae co-
pepods (Copepoda, Harpacticoida) are associated with large land crabs, living 
inside their branchial chambers (Huys et al. 2009).

Numerous mermithid nematodes, rotifers, rickettsia and other bacteria, and 
viruses are known from woodlice and land crabs (Provenzano 1983; Federici 
1984; Rigaud and Moreau 2004; Wang 2011; Ugbomeh and Bajor 2015). In par-
ticular, common iridoviruses (Iridoviridae) confer an iridescent blue color to the 
body of the infected woodlice (Williams 2008).

Burrows of land crabs and crayfish provide habitat for obligatory and fac-
ultative arthropod symbionts (e.g., Bright and Hogue 1972; Horwitz and Knott 
1991), including various flies and mosquitoes (Carson and Wheeler 1973; 
Carson 1974; Gómez 1977; Bertrand 1979; Goettel et al. 1981). Gramastacus 
insolitus, a very small non-burrowing Australian freshwater crayfish, survives 
droughts in the burrows of larger burrowing crayfish Geocharax falcata and 
Cherax destructor (Johnston and Robson 2009). Mosquitoes of the genus 
Deinocerites use the upper portions of burrows of large forest crab Cardiso-
ma guanhumi as daytime resting sites, while their larvae develop in the wa-
ter that accumulates at the bottom (Downes 1966; Adames 1971; Wolcott 
and Wolcott 1990). In turn, killifish Rivulus marmoratus feed on larvae of 
Deinocerites inside the burrows (Taylor 1990). Several woodlice taxa are as-
sociated with the nests of social insects, ants, and termites, showing specific 
morphological (reduction/absence of eyes and body pigmentation) and be-
havioral (evasive movements) adaptations tolerated by the hosts (Ferrara et 
al. 1988; Taiti and Ferrara 1988; Kronauer and Pierce 2011; Parmentier et al. 
2017; Taiti 2018). Massasauga rattlesnakes (Sistrurus catenatus) commonly 
choose burrows of cambarid crayfish in southeastern Canada as a hiberna-
tion site during the winter (Maple 1968; Seigel 1986; Kingsbury 1996, 1999). 
Subterranean flowers of Aspidistra elatior are allegedly pollinated by collem-
bolans and landhoppers Platorchestia japonica (Kato 1995; Conran and Brad-
bury 2007), although recent studies suggest that pollination is performed 
by fungus gnats (i.e., Cordyla sixi and Bradysia sp.) rather than crustaceans 
(Suetsugu and Sueyoshi 2018).
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Migrations and energy flows

Among the most prominent and significant ecological functions of terrestrial deca-
pods are migrations, one of the most famous and well-studied examples of the 
invertebrate-mediated transport of organic matter and nutrients from marine to 
terrestrial ecosystems and back (Klaassen 1975; Wolcott 1988; Hicks et al. 1990; 
López-Victoria and Werding 2008; Lindquist et al. 2009). Less studied connections 
can represent ecologically significant lateral links between terrestrial and freshwa-
ter ecosystems. Semi-terrestrial gecarcinucid crabs from Asian streams are sap-
rophages (Ng 1989; Lim 2013; Ng and Yeo 2013) feeding on coarse organic matter 
from neighboring land, e.g., leaf litter, often being the main macrodecomposer (Hill 
and O’Keeffe 1992; Abdallah et al. 2004; Dobson et al. 2007). They are also oppor-
tunistic predators that feed on smaller aquatic organisms (Abdallah et al. 2004; 
Dobson 2004), being in turn a food source for larger terrestrial animals (Ng 1989), 
thus carrying out the energy transfer between river and forest ecosystems.

Methods used for sampling of terrestrial crustaceans

Methods of collecting terrestrial macrocrustaceans (mainly woodlice and land-
hoppers) do not differ significantly from those designed for collecting soil mac-
rofauna, such as Macfadyen extractors (Macfadyen 1961), pitfall trapping, or 
hand-sorting of soil samples. Other methods that are occasionally used include 
‘cryptozoa boards’, i.e., artificial shelters placed on the soil surface (e.g., Hodge 
and Standen 2006). In contrast, sampling microcrustaceans requires specifi-
cally designed approaches. Insufficient knowledge of the diversity and ecology 
of microcrustaceans is clearly related to the lack of adequate and well-known 
methods for qualitative and especially quantitative sampling of these animals. 
Small crustaceans can be extracted by flotation or hand-sorting of alcohol-fixed 
material under the dissecting microscope (e.g., Bernier and Gillet 2012), but 
these methods are rarely used. Common “dry” extractors (Berlese or Tullgren 
funnels) used to collect microarthropods are not suitable because microcrusta-
ceans are essentially aquatic animals. “Wet” extractors (Baermann funnels) are 
designed mainly for nematodes and enchytraeids having thin and smooth bod-
ies and are likely ineffective for quantitative sampling of soil microcrustaceans.

The qualitative methods for collecting terrestrial crustaceans listed below 
are borrowed mainly from sampling methodologies targeting meiofauna, un-
derground (subterranean) and hypogean microcrustaceans, and collecting bur-
rowing crustaceans such as crabs and crayfish. Many quantitative methods de-
signed for marine and freshwater benthic animals are probably also applicable 
to quantitative sampling of terrestrial crustaceans (e.g., Boxshall et al. 2016; 
Hughes and Ahyong 2016). A detailed account of the common extraction tech-
niques of small crustaceans from the ground is given in Pfannkuche and Thiel 
(1988) and Boxshall et al. (2016). The technique of the wet sieving adapted for 
the sampling of soil- and leaf litter-dwelling copepods and other small crusta-
ceans is presented in Kikuchi (1984) and Fiers and Ghenne (2000). Generally, 
a portion of the soil or leaf litter is placed in a beaker or bucket with water and 
agitated, and the supernatant is decanted into a stack of sieves, with the coars-
est sieve at the top to remove larger pieces of detritus. The target size fraction 
is retained on the finest sieve and subsequently inspected using a light micro-
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scope. Sampling from waterlogged soils can be carried out by pumping and 
using a mesh for filtration (Hahn 2002; Leijs et al. 2009; Boxshall et al. 2016).

Research on and sampling of burrowing land crabs and crayfish are ham-
pered by their nocturnal activity and underground lifestyle. Commonly used 
methods include burrow excavation (Ridge et al. 2008; Loughman 2010), opera 
house and drop nets (Bryant et al. 2012), pitfall traps (Shaw 1996), the Nor-
rocky traps that capture crayfish at the entrance of the burrows (Norrocky 1984; 
Welch and Eversole 2006; Ridge et al. 2008), the burrowing crayfish net (Welch 
and Eversole 2006; Kingwill 2008; Ridge et al. 2008), and some others (see re-
view in Bryant et al. 2012). Sometimes these methods are combined; a relative-
ly recent emerging method involves the use of Alka-Seltzer/Aspirin tablets and 
soda water poured into the burrows with visible water or trialed in conjunction 
with flooding of burrows with water (Bryant et al. 2012).

Conclusions

Terrestrial crustaceans from six main lineages, representing ~ 4,900 current-
ly known species, are widespread in terrestrial ecosystems. The diversity and 
ecology of terrestrial crustaceans have been studied to various degrees; in 
particular, the biology of microcrustaceans is still known fragmentarily. Wood-
lice, the most successful terrestrial crustaceans, have been able to adapt and 
colonize a wide range of diverse terrestrial habitats, including extreme ones. 
An array of morphological and physiological limitations (e.g., the absence of 
a waxy cuticle protecting against evaporation, and aquatic mode of reproduc-
tion), likely prevent most other lineages of crustaceans from competing with 
other terrestrial arthropods and achieving a wider distribution. Due to the high 
abundance and density in some terrestrial habitats, such as temperate and es-
pecially tropical coastal forests and islands, crustaceans often play important 
ecological roles, being ecosystem engineers and crucial components of food 
webs, including the upper trophic levels. In many other ecosystems, the diversi-
ty and ecological significance of terrestrial crustaceans, especially microcrus-
taceans, can be significantly underestimated. Although often neglected by soil 
ecologists, a full diversity of terrestrial crustaceans, besides isopods, should be 
regarded as a prominent component of soil communities.
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